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Abstract. The pseudopotential method and thermodynamic perturbation theory are applied
to investigate the thermodynamics of Ni-Al alloys. The Einstetn model approximation in
the solid phase and the Percus-Yevick hard-sphere approximation in the liquid phase are
chosen as reference systems. In all the calculations the local Animalu pseudopotential and
the non-local pseudopotential with resonant contribution in the case of a transition metal
are used. The staticconcentration-wave method is applied toinvestigate the ordering process
in the solid phase. Taking charge transfer into consideration within the framework of the
non-local resonant potential model, we have described the features of the main excess mixing
characteristics and the dynamic viscosity in the liquid system studied. It is shown that in
NispAls alloy the Kauzmann reduced temperature is higher than in pure Ni but insufficient
for ready glass formation.

1. Introduction

In accordance with the Miedema classification [1], two requirements must be met for
ready glass formation (RGF) to occur: AH < —5 kcal mol~'and r /r, < (.85 (AH is the
heat of mixing, r,/r, is the atomic ratio). In conformity with this criterion the Ni-Al
system is more preferable among 3d transition metal-Af alloys: this system is non-RGF
but in the A—R map it is found near the line that divides RGF and non-RGF regions [2-5].

The strong interaction between unlike components is the distinctive feature of RGF
systems characterized by the considerable compression and the large negative heat
of mixing. In recent work [6, 7] within the framework of the local Animalu model
pseudopotential (MP) we have calculated the main thermodynamic properties of liquid
Ni~Al alloys. We could not describe the observed large negative deviation from ideality
[8, 9] and the viscosity peak near the equiatomic composition [10] in the system under
consideration. The Animalu Mp does not enabie one to take into account the change of
electronic structure when the transition metal is alioyed with a polyvalent one. In
accordance with the existing viewpoint the strong interaction between unlike atoms in
such systems as the transition metal-polyvalent metal is interpreted from the filling of
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the d band of the transition metal as it is alloyed with a polyvalent one. In the present
work we have set the task to describe this phenomenon within the framework of the
non-local Mp in the case of a simple metal {11, 12] and its resonant modification in the
case of a transition metal [13].

The general scope of this paper is as follows. In section 2 a general expression for the
Helmholtz free energy of the binary alloy based on the use of pseudopotentials and the
Gibbs~Bogoliubov inequality is presented. In section 3 we construct the non-local MP in
the case of a simple metal and its resonant modification in the case of a transition metal.
The calculated melting characteristics of Ni are presented in section 4. We have also
calculated the Kauzmann temperature for liquid Ni. Section 5 is dedicated to the
calculation of the equilibrium volume, and the energy and entropy of mixing of liquid
Ni-Al alloys. We quote our results of the dynamic viscosity calculation and analyse its
pecuiiarities. In section 6 the calculation of the Kauzmann temperature for Nig Al alioy
is presented. In the case of the solid phase the thermodynamic statistical theory of
ordering is used in order to calculate the Helmholiz free energy. The temperature
dependence of the ordering potential is investigated, '

2. The construction of the Helmholtz free energy

The Helmholtz free energy (F) is calculated in second-order perturbation theory with
the pseudopotential formalism, and thermodynamic perturbation theory is also used
[14, 15]. Ta describe the reference systems the Einstein model in the solid phase and the
Percus-Yevick (pY) hard-sphere (Hs) approximation in the liquid phase [16] are used.
The Carnahan—Starling expression was chosen to calculate the entropy of melting [17].
The Geldart-Vosko [18] and Shaw {19] screening functions were applied in the cal-
culations of the characteristic function in the case of the local and non-local mp respect-
ively. According to the Gibbs-Bogoliubov inequality the following expression is valid:

F5<K)0+E0+E| +(Ez>0+(E3>u_ TSQ (21)

Here K is the kinetic energy of ions, £y is the sum of kinetic, exchange and correlation
energies of a uniform electron gas, £, is the Hartree energy, ( E»)y is the band-structure
energy, {E;),is the Ewald energy, and (. . . )g represents averaging over the reference
system. S is the entropy of the reference system. For the solid phase

S(] = Sﬂ + Sc@nf + Seg (2.2)

where S, is the configuration entropy calculated in the ideal mixture approximation,
Sy is the vibrational entropy in the Einstein approximation and S, is the electron-gas
entropy.

For the binary system of hard spheres

SU = Sg,as + S(n) + Sconf + S(AG) + Seg ’ (2.3)

where S, isthe perfect-gasentropy, S(#)isthe packing entropy and §(A¢) isan addend,
which is solely due to the presence of spheres with different diameters in the mixture.
In all the following calculations we use the atomic units system (au) where i = m, =
le| = 1.

The values of the equilibrium atomic volume (€24} were determined from the pressure
equation of state and the optimum parameters of reference systems were found by
minimizing the right-hand side of inequality (2.1).
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Detailed expressions of the Helmholtz free-energy contributions are published in
[20]. We have used the well known non-local formalism [19, 21-24] to calculate the
Ewald energy and the pseudopotential characteristic functions.

3. The construction of the non-local model psendopotential

3.1. Simple metal

In order to reproduce the MP’s disperse ability similar to a real one we must describe
free-ion term values. This is the main principle on which the Heine-Abarenkov (HA)
approach is based. In accordance with the HA original form the ion core was interpreted
as a ‘black box’. In other words the HA MP shape was not defined uniquely inside the ion
core. Different potentials with different behaviours in the ion core region which are able
to reproduce free-ion term values can lead to still different results in the calculations of
boih electronic and atomic properties of metals. In order to avoid this ambiguous
behaviour in the ion core region it is necessary to input an additional parameter to
change the potential form using the well based a priori criterion—the thermodynamic
equilibrium condition.

In accordance with the Vatolin—Yuryev—Gelchinskii scheme [11, 12] one can write
the free-ion MP in direct space as follows:

Iy

O‘Jo(f.,E)= —"Z%‘FI:EDB(RM —r)(A,(r,E)-F?;%)Q; (31)

where Z,is the simple metal valence, /is the angular momentum index, #isthe Heaviside
function, and Q, is the projection operator which picks out the /th angular momentum
part. Ry is chosen as half of the sum of the atomic and ionic radii.

In reciprocal space the non-screened form of the non-local M is written as follows:

wolk,q) =V, +f(k.q) ' (3.2)
where V, = —-4xZ,/Qq? is the Fourier transform of the Coulomb potential and

fy
flle,q) = %rr% (21 + 1)P;(cos 8)

R zZ
x [ a4, )+ Z2)jikn)i Ik + al) (33
0
is connected with non-local Mp part. Here Pyx) is a Legendre polynomial, j(x) is a
spherical Bessel function, and 8 is the angle between k and k + ¢.
The non-local MP under consideration shows coulombic behaviour outside the core
and is described by a polynomial of degree 3 in the ion core region:

2o am) +olm) +alz) ]
=——=|gq,+b{— — ) +dd—] | .
A By = - g2+ b =) +al )+l (6.4
Under smooth conditions on the core sphere (R),) one can exclude two parameters:
bg = —2a, + d( +3 G =a~ 2d{ -2 (3.5)

Thus we have two independent parameters for each / component of the constructed
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MP: ; and d,. The parameter &, allows one to change the pseudopotential form by the
definition of the w/(r = 0) value (w} corresponds to the /th angular momentum part),
and 4, is chosen from the following condition [12]: ewy(r} must satisfy the Schrédinger
equation with the self-energy E, taken from ionic term values [25]. This scheme enables
one to find the parameter d; by arbitrary fixed values of the parameter a,. For an
equivalent form of the MP one can use the thermodynamic equilibrium condition at the
melting point (Al: T, = 933 K) together with the description of the free-ion term values.
Besides it is necessary to use a very strong condition—the melting temperature
description (F,(Ty) = F(Ty)). In the case of a simple metal (Al): Z, =3, Ry = 1.9,
ay = 8.019, a,=—8.0, dy(E})= —-21.490, d,(Ef)=12.097, ady/dE' = —3.7523,
ad /dE' = 0.7495 (au), where E¢ is Fermi energy with respect to the free ionic energy
E,;[26]. Inthe pioneer works [11, 12] the parameters were obtained from the equilibrium
condition at T=0K.

3.2. Transition metal

In the case of a transition metal we can observe the d resonant effect when the energy
of s—p electrons is equal to the centre of gravity of the d band. The non-local resonant
Mp is built up as a sum of the non-resonant contribution wy(r), which is responsible for
the weak s—p dispersion, and the resonant one V. (r, E}, whlch mﬂuences only the d
part of the wavefunction [27, 28). In reciprocal space

VD(k'r Q) = mD(kF’ q) + Vn:s(kv q) (36)

where @ {kg, g) coincides with (3.2) in the Fermi sphere approximation and V (%, q)
reflects the s—d hybridization and influences only the d part of the wavefunction. In
accordance with [23, 28] we can write

Ek - Ed
E, — E4) +(0.5W)%

5
Vees(k, q) = — Palcos &) y(k)y(ik + ql) 1 (3.7

Here y(k) is the hybridization matrix element. Taking into consideration [29, 30] that,
when k — 0, (k) ~ k* and y falls tozero outside the first Brillouin zone, one can suppose
the following expression:

=2 (L) ()
rk) =5 (kd) exp{ = (3.8)

where k, = {(67%/Q)"? is the Brillouin zone radius, ky = (2E,)"? characterizes the
d-zone position, and £, = 0.5k% A, is the resonant MP amplitude connected with d
band width (A) [13, 29]:

Ay = AmQ/HY. ' (3.9
We use the following expression [23] for density of the d states:
10 0.5W
ny(E) = — — e e (3010)

7 (E ~ Eq) + (0.5W,)?

to obtain the expression (3.7). Here E, is the centre of gravity of the d band and W is
the d resonant width. If we integrate (3.10) from ~= to E and equate the result to the
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d electron valence Z,, the Friedel equation for the description of the d band position
with respect to the Fermi level will be obtained:

Ed = EF + OSWd/tan(OlJer) (311)

In the present work the following parameters of the non-local resonant Mp obtained
in [13] are used: Z, =1, Ry = 2.2, ay(ER) = 16.0, a,(Ef) = 35.442, a,( Er) = 35.442,
do(Ep) = —35.235, d\(Eg) = —52.459, do(Ep) = —21.433, Z4 =9, 4,=0.938, W, =
0.034. Here Wy and A are quoted from [30] and the expression (3.9) is used to obtain
Ag- Ry ischosen as half of the sum of atomic and ionic radii. Parameters 4, and 4, enable
one to describe free-ion term values of Cu* (see [13]) and the equilibrium density of
solid Ni at T = 0 K and reflect the equality of Helmholtz free energies of both phases at
the melting point (Ni: T, = 1726 K) with high accuracy.

4. The calculation of the melting thermodynamic characteristics and the Kauzmann
temperature: application to Ni

At present widespread methods for the rapid sohdification of metal alloys enable one to
reach cooling rates from 10* to 107 Ks™’ [1]. These are not enough to quench an
amorphous phase in pure liquid metals. As shown in [31, 32] quenching rates ~10'%-
10" K s ™! are necessary to obtain a single-component metallic glass in Ag, Cu, Ni and
Mo. In [33] single-component metallic glasses (Ni and Mo) were obtained. A new
method for the explosive sprayingof the melt was used. The amorphous Nicrystallization
temperature 7, = 570 K close to the glass transition temperature (7,) was determined.
In [34] the low limit for the glass transition temperature was estimated as the Kauzmann
point (Na, Pband Mg). The investigations mentioned above have stimulated the present
calculations, which aimed to model the cooling of liquid Ni up to the glass transition
temperature.

Figure 1 shows the interatomic potential V(#) at the melting point in both pseudo-
potential approximations mentioned above. The non-local potential is deeper and
shifted towards the origin. This behaviour reflects the stronger interaction within the
framework of the resonant Mp and influences the current results.

Table 1 lists the thermodynamic characteristics of Ni calculated at the melting point.
Qg is the atomic volume in solid (tiquid) Ni, AQ and AS are the volume and the entropy
of fusion, respectively, 1 is HS packing fraction, and 8y, is the Debye temperature. The
stronget interatomic interaction in the non-local approximation enables one to improve
the results of the variational parameter calculation in comparison with the Animalu me.
The good agreement between the calculated values and the experiment is a necessary
condition for satisfactory calculation of the glass transition temperature.

Figure 2 gives the results of the Kauzmann temperature calculation for Ni. The
calculation was performed on the basis of the following criterion [34, 41]: When the
temperature approaches T, a configurational part of the entropy of the liquid vanishes,
thus the entropy of the liquid (S;) decreases faster than that of the solid (S;). When the
melt is frozen below a critical temperature (7), 5 < .5, (Kauzmann paradox). 7, is the
characteristic temperature of Kauzmann theory and it corresponds to the low limit for
T, in the limit of the low (critical) cooling rate.

According to the present calculations there are T = 1130 K and T{® = 800 K. As
mentioned above T5® = 570 K [33]. The resonant MP enables one to obtain the more
realistic value of T,. As mentioned in [42] the glass transition associated with the
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Figure 1. The interatomic potential of liguid Ni: Figure 2. The calculation of Ni Kauzmann tem-
(——1) the cesonant Mp; (- - - -) the Animala MP. perature: (~—) the resonant Mmp; (-=--~~} the
Animalu MP.
Table 1. The theoretical and experimental melting characteristics of Ni,
MP Q, (au) € (au) ARQ(%) ASlk 1 8y (K)
Animalu 88.62 84.05 -5.16 0.82 0.423 268
Resonant 77.34 82.73 6,97 1.09 0.462 374
Experiment 80.64 [35] 83.23[35] 3.21[33] L.11[37] Q.450[39] 375[40)

{and reference) 84,02 [36] 4.19[36] 1.23([38]

Kauzmann phenomenon cannot occur for substances of limited molecular weight with
physically reasonable potentials. The real glass transition always occurs by T, > T;.

As mentioned in [34] the correct description of the glass transition temperature of
alkali metals based on the Kauzmann criterion (T, = 0.4T,,) is possible oniy within the
framework of the Weeks—Chandler—Andersen (wca) model (liquid state) and the quasi-
harmonic phonon model (solid state)}. Similar calculations performed in [34] within the
Ha MP and variational PY HS model led to too high results (T, = 0.577 ;). Analogously
one can explain the too high present result (7 = 0.66T,,) obtained in the local Animaiu
pseudopotential approach. Taking into account the resonant peculiarities of the tran-
sition metal within the framework of the non-local Mp, one can more reliably describe
the interatomic interaction and satisfactorily calculate thermodynamic characteristics.
All these provide the lowest T, (T, = 0.46T,) even within the framework of the simple
reference models under consideration.
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5. The calculation of the thermodynamic properties of liquid Ni—-Al alloys

The non-local pseudopotential method expounded above enables one to describe the
bonding energy, bulk moduli and phonon spectra of solid metals and also compress-
ibility, heat capacity, entropy and electrical resistivity of pure metallic melts [11-13]. In
the present work we calculate the thermodynamic characteristics of liquid Ni-Al alloys
at a fixed temperature and within the whole concentration interval.

The interpretation of the deviation from ideality is the main problem of solution
theory. This deviation is characterized by such thermodynamic values as volume (AV),
energy (A£) and excess entropy (AS®) of mixing. All these characteristics are important
parameters of many phenomenological models of the glass transition. Many attempts
based on different approaches were made in order to describe the deviation from the
Zen law:

(i) The association concept with finite lifetime has proved to be very useful in the
theory of liquid alloys [43].

(if) Taking into consideration the electron density rearrangement due to charge
transfer in order to cancel the chemical potential difference, the atomic volume change
of the alloy can be described [44].

The first approach is realized in many phenomenological models. Taking into con-
sideration the charge transfer within the framework of an a priori model we can realize
the second approach.

The charge transfer in Mn(Fe,Co,Ni)-Al alloys was investigated in [45] by use of
soft x-ray spectroscopy. The experiments have shown that there was a filling of the d
band of the transition metal after it was alloyed with the polyvalent metal (Al). Moreover
at a critical concentration of Al (¢ ¥ ) the d band was completely filled. Detailed photo-
emission studies have already ascertained [46] that the density of states near the Fermi
level (ng(Ey)) in the equiatomic Ni-Al alloy is much lower than in pure Ni. Usually this
critical concentration is found by diamagnetic transfer conditions when the d band is
completely filled [46, 47]. In {48} the theoretical method of the definition of c§ was
elaborated. In the present calculation we have used c5 = 0.55[47].

In accordance with the existing d band filling mechanism [46—49] there are two sets
of equations to calculate Z, and Z:

(i) 0 = ¢; =< ¢3 (d band is unfilled)
Zy=Z3 + (10 — Z3)cy [k (3.1
Z=Ze, +(Z; — n)ea. . (5.2)

Here #_ is the number of valence electrons transferred into the d band; #, is found from
the balance condition at ¢, = ¢J': '

need = (10 = Z9H1 — c¥). (5.3)

In the present calculations n, = 0.8132. Taking into consideration Wy = 0 when the d
band is completely filled [13] we have assumed a linear d resonant width decrease to
zero within the same concentration range:

Wy = Wil - cr/c3) (5.4)

where W9 is the d resonant width of pure Ni.



9236 A I Landa et al

(ii) 5 = c¥ (d band is filled)

Zd = 10 Zs = (Z] + Zg - 10)C| + ZZCZ (5.5)
Wd =} nd(Ep) =) (56)
E4 = Ep + lim [0.5W,/tan(0.17Z}]. (5.7)

[ )

We have taken into account that the second term in (5.7) transforms to 0/0 type when
the d band is filled. The concentration point ¢; belongs to both intervals mentioned
above. That is why we have used the limit transition in (5.7).

In [20] to save computing time we have considered non-local effects only for Ni (in
Al non-local effects are very small). Thus in this model the Ni depletion hole charge
changed but the Al one became constant within the whole concentration interval. In
order to aveid this discrepancy we have selected the resonant Mp amplitude to describe
the experimental value of the heat of mixing in the given system.

In contrast to [20] the present calculations were performed within the framework
of the whole non-local model without the use of any thermodynamic experimental
information on Ni-Al alloys. We have used the depletion hole charge balance equation:

cilpn — pli) + cy(par — pS) =0 (5.8

where pyay is the depletion hole charge for Ni (Al) in the alloy and pfya) is the same
value in the pure metal. We have solved this equation with respect to the resonant MP
amplitude.

Calculated values of the s—p electron density (Z,/Q ), depletion hole charges and the
resonant MP amplitude are plotted in figure 3. With Al concentration increasing, the
electron density increases too. It leads to the Wi depletion hole increasing in order to
compensate the electron density growth., When Ni atoms are dissolved in Al, the Al
depletion hole decreases.

The calcuiated values of the equilibrium volume, and the energy and excess entropy
of mixing are plotted in figure 4 (T = 1923 K). Experimental results were taken from
[8,9,50]. The present calculations show 2 small deviation from the Zen law when
¢, < 40 at.% and a large negative deviation within the rest of the concentration interval.
The calculated mixing energy is several times as high (when Al is dominant in Ni-Al
alloys) as the experimental one. The calculations performed in [6] { Animalu MP) do not
enable one to describe the considerable negative excess entropy of liquid Ni-Al alloys.
The excess mixing entropy calculated in the non-local approach is in good agreement
with the experimental data under consideration; moreover ASg < QO whenc, > 40 at. %.
There are two reasons for this behaviour: first, the large volume compression, which
leads to the negative packing entropy contribution to ASE; secondly, d band filling leads
to the negative electron entropy contribution to ASE [48]. As mentioned in[41] the glass
transition temperature attains a maximum at the same concentration point where AS®
reaches a minimum. One can expiain this coincidence on the basis of the Kauzmann
criterion [34, 41]. But the reduction of the entropy of liquid alloys, unlike a pure metal,
is due not only to the cooling but to the volume compression too.

Calculated values of Hs diameters and Hs packing fraction are plotted in figure 5.
Figure 6 shows the dynamic viscosity concentration dependence at T = 1923 K. The
experimental viscosity results were published in [10]. Taking into consideration the
change in depletion hole charge mentioned above one can explain the observed Hs
diameter behaviour. Both the considerable Ni Hs change within the concentration range
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Figure 3. The concentration dependence of: {(a)
the s-p electron density; (b) the Nidepletion hole
charge; (¢} the Al depletion hole charge; (4) the
resonant MP amplitude,

Al

Figure 4. The concentration dependence of: ()
the equilibrium volume; {#) the energy of mixing;
(c) the excess entropy of mixing. T=1923K.
Symbols: () the resonant Mp; {+) the Animalu
MP; (W) experiment [8, 9. 50].

and the volume compression lead to a large positive Hs packing fraction deviation from
additivity. It shows up in the viscosity of liquid Ni-Al alloys, which was calculated within
the framework of the Enskog model (the working formulae are given in [7]). We are
able to describe the viscosity peak within the framework of the non-local Mp although it
becomes wider and probably too high compared with the experimental one. Never-
theless, we can take into account the principal possibility of such peak description within
the framework of the atomic viscosity model without using the association mechanism.
Taking into consideration viscosity and entropy extremum position near the equiatomic
composition, we have chosen NisyAly, alloy to calculate the Kauzmann temperature.
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the Ni Hs diameter: (b) the Al Hs diameter (the dependence of liquid Ni-Al alloys. T'= 1923 K,
resonant MP); {¢) the HS packing fraction. Symbols Symbols: (x) the resonant MP; (+) the Animalu
in (¢): {(+) the resonant Mp; (M) the Animalu Mp. Mp; (M) experiment {10].

6. The calculation of the Kauzmann temperature in NisAls, alloy

As shown in section 2, the Helmholtz free energy of the disordered binary solid solution
can be calculated by means of inequality (2.1) with the Einstein oscillator system as the
reference state. Ordering results in an additional contribution to the energy expression
(ordering energy) and 1o the account of the long-range order parameter in the entropy
term. In [51] the pseudopotential method and thermodynamic perturbation theory were
used to investigate the ordering of Mg,Cd and MpgCd, phases: moreover the long-range
parameter (1) was determined by means of the variational approach. This approach has
an essential deficiency: experimental information on the type of superstructure under
investigation must be known. In [41] the Kauzmann criterion was used to investigate
the liquid-glass transition in Ca-Mg and Mg-Zn systems and the ordering entropy
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information was taken from experiment. At the same time it is interesting to make ana
priori determination of the energetically favourable superstructure arisen on the basis
of the given lattice of the disordered solid solution. The solution of this problem becomes
possible due to the joint employment of both the pseudopotential method and the
thermodynamic statistical theory of ordering [52-54]. This approach was used in {55-
57} to investigate the ordering effects in the Ni-Al system (Animalu local Mp). It was
found that the superstructures B2 (NiAl) and L1, (Ni3Al) based on BCC and Foc lattice,
respectively, were the most favourable (our present non-local calculations give the same
result) and the phase diagram in the two-phase region between NiAl and Ni.Al was
plotted,

In order to calculate the ordering contribution to the Helmholtz free energy of the
binary solution it is necessary to know the Fourier transform of the ordering potential
V{k,). Here k; is one of the wavevectors of the star which characterizes the stability of
the given superstructure. For the superstructure B2 under consideration, &, = (111).
As shown in [52-54]

V) =25 Frolao + ) = s [ 90 Posle) (61)
where
Fus(@) = Fon(@) + Q1/Q°)NZT = 2)? expl—q? /4. 62

Here F,.,(¢g) is the subtractive pseudopotential characteristic function, Zj, is the
effective ion valence and » is the Ewald parameter (see appendix}.

Knowing the ordering potential V{111) one can calculate the long-range order
parameter for B2 superstructure by means of the equation [52]:

{c; = 0.5t)e; —0.57) V(111
(¢, + 0.57)(c; +0.57) kT
The ordering energy for B2 phase can be written as follows [52]:
AUy =8V(111)7? (6.4)
and the configuration entropy must be written as follows [58]:
§%d = —tkg((c, + 0.57) In(c, + 0.57) + (¢, — 0.57) In{c; — 0.5)
+ (¢, + 0.5t) In{c; + 0.57) + (¢; — 0.57) In(c, — 0.57)]. {6.3)

in the present calculation of the Helmholtz free energy of the ordered solid solution
we have the following scheme: In order to obtain py, ), we have solved the pressure
equation of state for pure components and thus using (5.8} and the common variational
scheme the equilibrium volume of the disordered solid solution was found. This volume
was used to calculate F,(q) and ry, Z;;—to define Ewald parameter » (see appendix).
Then using (6.1)-(6.5) one can caleulate V{(111), 7, AU and §99,.

In accordance with [57] within the framework of Animalu MP for B2 phase of Nis;Als,
alloy the following result is obtained: V(111) = —0.0737 at T = 0 K, which corresponds
to the order—disorder transition temperature 77 = 5818 K calculated by the formula
[52]:

In

(6-3)

T = —c,c,V(111)/kg. (6.6)

The above index ‘0’ means that the ordering potential is calculated at T = Q K and is
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Table 2. The ordering potential V(1 11) (in au) temperature dependence in NigAlg, alloy.
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Figure 7. The temperature dependence of the Figure 8, The calculation of NigAly, Kavzmann
long-range order parameter in B2 phase NigAls, temperature (the resonant Mp).

(the resonant MP). Symbols: (M) without account
of ¥(111) temperature dependence: (+) with
account of V{111 temperature dependence.

temperature-independent. The present calculations with the non-local Mp give the
following resuits: at T=0K and V(111) = —0.0839, r = 1 and T = 6642 K. But the
approach under consideration allows one to show the reduction of the ordering potential
with increasing temperature. This temperature dependence is reflected in tuble 2. Using
equation (6.3) one can construct the temperature dependence of the long-range order
parameter 7(7T) with the account of the temperature dependence of V(111). The
calculations are performed up to the order—disorder temperature (7,) and the results
are plotted in figure 7. The results of the calculation with the non-local Mp and without
taking account of the V(11 1) temperature dependence are plotted too, The calculated
critical temperature is 7, = 3140 K, and is considerably smaller than T'? quoted above.

Figure 8 gives the result of the Kauzmann temperature calculation for NigAlsg alloy
performed within the framework of the non-local Mp. According to the calculations
T = 1830 K'and 71 = 3100 K. 7, = (0.59T, is higher than the same value of pure Ni
(T, = 0.46T,,) but too low for RGF.

7. Conclusions

The use of two different quantum-mechanical models of the interatomic interaction (the
pseudopotential method and the tight-binding approximation) and the thermodynamic
variational methods is standard in work devoted to research on the thermodynamic
characteristics of binary metallic alioys. Most of them are dedicated to simple metal
alloys where the use of the local Mp is correct [14, 15, 51, 59]. However, in systems with
a significant deviation from ideality, good agreement with experiment can be reached
only by the use of the non-local pseudopotential. For an example one can look through
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the works [41, 60] where the first-principles orthogonalized plane-wave (0Pw) pseudo-
potential wasused. In [61] chemical short-range order (CsRO) investigations in the liquid
and amorphous alloys of simple metals based on the orw method and Yukawa charge
hard-sphere (YHs) reference system were made. Use of both the tight-binding model
and the Yukawa formalism was made in the works [62, 63] to investigate CSRO in liquid
and amorphous transition metal-transition metal {T-T) alloys.

The present work is devoted to the transition metal-polyvalent metal (T-P) Ni-Al
system. The use of the local MP [6, 7] does not aliow one to show the main distinguishing
feature of this system—the large negative deviation from ideality. This problem can be
solved only in terms of the complete non-local approach with resonant mechanism
interaction. The correct account of the electron effects when a transition metal is
alloyed with a polyvalent metal allows one to describe the peculiarities of the main
thermodynamic and kinetic characteristics of T-P liquid alloys which are necessary to
estimate the glass transition ability. It is very important to take into consideration both
d band filling and depletion hole change around each component. One can describe
rather well the strong negative deviation from ideality without use of the association
mechanism.

The Kauzmann temperature calculations for Ni and Niz Alsy were performed. It is
shown that in the alloy under consideration the Kauzmann reduced temperature (T,/
T..) s higher than that in pure Ni but insufficient for RGF.
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Appendix

Aswasshown in [52] the electrostatic contribution to the ordered energy of a completely
ordered alloy with two types of sites in pseudopotential theory can be represented as:

. 4 1 (g0 + k,|? v\ 2
AEes = %‘(Z; - Z;)ZI:—-Q—Z m EXP(—%) - 2(;) ]Clcz- (Al)
q0 “

In accordance with [52-54] the Ewald parameter » in (A1) is chosen so that the con-
tribution from direct space may be ignored.

On the other hand A E, is the difference between the electrostatic energies of com-
pletely ordered and completely disordered alloys. Therefore from the condition of the
limit transition from the completely ordered state to the completely disordered one,
within the framework of the statistical concentration-wave model [52] the electrostatic
contribution in the Fourier transform of the mixing potential ¥V (k;) can be written as:

Veslk) = (Z/C]CZ)AE(;S' (AZ)

But Ewald’s sum in {A1) depends only upon both the basic crystal and the ordered
substructures. Therefore V(k,) may be expressed as

Vcs(ks) = a’?\d(zl* - Z;)z/r() (A3)

where a}y 1s the Madelung constant for the given superstructure.
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Let us show that in the case when all sublattices of the ordered alloy are crys-
tallographically equivalent (for instance, two sublattices in superstructure B2) o'}, may
be expressed over Madelung constants of the basic lattice,

Let the basic lattice contain » crystallographically equivalent sublattices, and in the
completely ordered state k of them arc oceupied by atoms of type A and m by atoms of
type B. From the equivalence of these sublattices one can obtain the following relation
between Madelung constants [64]:

oy =@, = and &, = dp, =) (i )ip+q). (Ad)

In this case the electrostatic energy of the completely ordered alloy will be expressed in
the following way:

o = [1/QRur)jlke (Z1)* + ma(Z5) + k(k - Da n(Z1)

+m(m ~ o ,(Z3) + 20 .mkZ} Z3 ] (AS5)
After some easy algebra
Ee = [1/2ro)l[an(c1 Z} + 223)° + (mk/n*Yay — @} ZT - Z3)?]. (A6)
Here oy is a *full’ Madelung constant of the basic lattice:

oy =) + (7~ Daps. (AT

Itis obvious that the first term in { A6) is equal to the energy of completely disordered
solid solution [52] and hence the second term must be equal to AE (Al). Owing to this
discussion one can immediately obtain

ayy = (an —ap). (A3)

For the B2 structure o= —1.397007. a,;==0.394851 (a¥ =afC=
—1.7918585); for the L1, structure a,, = —1.108 8047, o), = —0.2276472 (a““
aFFC = —1.79174723).
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