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Abstract. The pseudopotential method and thermodynamic perturbation theoryare applied 
to investigate the thermodynamics of Ni-AI alloys. The Einstein model approximation in 
the solid phase and the PercusYevick hard-sphere approximation in the liquid phase are 
chosen as reference systems. In  all the calculations the local Animalu pseudopotential and 
the non-local pseudopotential with resonant contribution in the case of a transition metal 
are used. Thestaticconcentration-wave method isapplied toinvestigate the ordering process 
in the solid phase. Taking charge transfer into consideration within the framework of the 
non-local resonant porential model, we have described the featuresofthe mainexcess mixing 
characteristics and the dynamic viscosity in the liquid system studied. I t  is shown that in 
Ni5,,Alw alloy the Kauzmann reduced temperature i s  higher than in pure Ni but insufficient 
for ready glass formation. 

1. Introduction 

I n  accordance with the Miedema classification [I], two requirements must be met for 
ready glass formation (RGF) to occur: A H  < -5 kcal mol-' and rl/r2 < 0.85 ( A H  is the 
heat of mixing, rl/r2 is the atomic ratio). In conformity with this criterion the Ni-AI 
system is more preferable among 3d transition metal-AI alloys: this system is non-RGF 
but in the U-R map it is found near the line that divides RGF and non-RGF regions [2-51. 

The strong interaction between unlike components is the distinctive feature of RGF 
systems characterized by the considerable compression and the large negative heat 
of mixing. In recent work [6,7] within the framework of the local Animalu model 
pseudopotential (MP) we have calculated the main thermodynamic properties of liquid 
Ni-A1 alloys. We could not describe the observed large negative deviation from ideality 
[8, 91 and the viscosity peak near the equiatomic composition [IO] in the system under 
consideration. The Animalu MP does not enable one to take into account the change of 
electronic structure when the transition metal is alloyed with a polyvalent one. In 
accordance h<th the existing viewpoint the strong interaction between unlike atoms in 
such systems as the transition metal-polyvalent metal is interpreted from the filling of 
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the d band of the transition metal as it is alloyed with a polyvalent one. In the present 
work we have set the task to describe this phenomenon within the framework of the 
non-local MP in the case of a simple metal (11,12] and its resonant modification in the 
case of a transition metal [13]. 

The general scope of this paper is as follows. In section 2 a general expression for the 
Helmholtz free energy of the binary alloy based on the use of pseudopotentials and the 
Gibbs-Bogoliubov inequality is presented. i n  section 3 we construct the non-local MP in 
the case of a simple metal and its resonant modification in the case of a transition metal. 
The calculated melting characteristics of Ni are presented in  section 4. We havc also 
calculated the Kauzmann temperature for liquid Ni. Section 5 is dedicated to the 
calculation of the equilibrium volume, and the energy and entropy of mixing of liquid 
Ni-AI alloys. We quote our results of the dynamic viscosity calculation and analyse its 
peculiarities. In section6 the calculationof the Kauzmann temperature for Ni,Al,,alloy 
is presented. In the case of the solid phase the thermodynamic statistical theory of 
ordering is used in order to calculate the Helmholtz free energy. The temperature 
dependence of the ordering potential is investigated. 

A I Landa et a1 

2. The construction of the Helmholtz free energy 

The Helmholtz free energy (F) is calculated in second-order perturbation theory with 
the pseudopotential formalism, and thermodynamic perturbation theory is also used 
[14.15]. To describe the reference systems the Einstein model in the solid phase and the 
Percus-Yevick (PY) hard-sphere (HS) approximation in the liquid phase [16] are used. 
The Carnahan-Starling expression was chosen to calculate the entropy of melting [17]. 
The Geldart-Vosko [lS] and Shaw [19] screening functions were applied in the cal- 
culations of the characteristic function in the case of the local and non-local MI' respect- 
ively. According to the Gibbs-Bogoliubov inequality the following expression is valid: 

Here K is the kinetic energy of ions, Eo is the sum of kinetic, exchange and correlation 
energies of a uniform electron gas, E ,  is the Haruee energy, (E2)" is the band-structure 
energy, (E3)" is the Ewald energy, and (. . . )o represents averaging over the reference 
system. So is the entropy of the reference system. For the solid phase 

where S,,, is the configuration entropy calculated in the ideal mixture approximation, 
Se is the vibrational entropy in the Einstein approximation and S,, is the electron-gas 
entropy. 

For the binary system of hard spheres 

s o  = Sgar + % l l )  + Sconf + S(A.0) + Se, (2.3) 
where S,,is the perfect-gas entropy, S(q) is the packingentropy and S(Ao) isan addend, 
which is solely due to the presence of spheres with different diameters in the mixture. 
In all the following calculations we use the atomic units system (au) where h = me = 
\ e l  = 1. 

The valuesof theequilibrium atomicvolume (51,) weredetermined from the pressure 
equation of state and the optimum parameters of reference systems were found by 
minimizing the right-hand side of inequality (2.1). 
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Detailed expressions of the Helmholtz free-energy contributions are published in 
[20]. We have used the well known non-local formalism [19,21-241 to calculate the 
Ewald energy and the pseudopotential characteristic functions. 

3. The construction of the non-local model pseudopotential 

3.1. Simple metal 

In order to reproduce the MP’S disperse ability similar to a real one we must describe 
free-ion term values. This is the main principle on which the Heine-Abarenkov (HA) 
approach is based. In accordance with the HA original form the ion core was interpreted 
as a ‘black box’. In other words the HA MP shape was not defined uniquely inside the ion 
core. Different potentials with different behaviours in the ion core region which are able 
to reproduce free-ion term values can lead to still different results in the calculations of 
both electronic and atomic properties of metals. In order to avoid this ambiguous 
behaviour in the ion core region it is necessary to input an additional parameter to 
change the potential form using the well based a priori criterion-the thermodynamic 
equilibrium condition. 

In accordance with the Vatolin-Yuryev-Gelchinskii scheme [ l l ,  121 one can write 
the free-ion MP in direct space as follows: 

where 2, is the simple metal valence, lis the angular momentum index, 0 is the Heaviside 
function, and Q, is the projection operator which picks out the lth angular momentum 
part. RM is chosen as half of the sum of the atomic and ionic radii. 

In reciprocal space the non-screened form of the non-local MP is written as follows: 

%(k,  4) = v, + f (k  4) (3.2) 
where V,  = -4nZ2/Qq2 is the Fourier transform of the Coulomb potential and 

(3.3) 

is connected with non-local MP part. Here P,(x) is a Legendre polynomial, j , (w)  is a 
spherical Bessel function, and B is the angle between k and k + q. 

The non-local MP under consideration shows coulombic behaviour outside the core 
and is described by a polynomial of degree 3 in the ion core region: 

Under smooth conditions on the core sphere (R,) one can exclude hvo parameters: 

b, = -2a, + d ,  + 3 cI = a, - Zd, - 2. (3.5) 
Thus we have two independent parameters for each lcomponent of the constructed 
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MP: a, and d,. The parameter a, allows one to change the pseudopotential form by the 
definition of the wb(r = 0) value (wb corresponds to the Ith angular momentum part), 
and d, is chosen from the following condition [12]: q ( r )  must satisfy the Schrodinger 
equation with the self-energy E, taken from ionic term values [25]. This scheme enables 
one to find the parameter d, by arbitrary fixed values of the parameter a,. For an 
equivalent form of the MP one can use the thermodynamic equilibrium condition at the 
melting point (AI: T,,, = 933 K) together with the descriptionof the free-ion termvalues. 
Besides it is necessary to use a very strong condition-the melting temperature 
description (Fs(T,,,) = F,(T,,,)). In the case of a simple metal (AI): Z 2  = 3, RM = 1.9. 
a. = 8.019, a ,  = -8.0, do(E;)  = -21.490, d , ( E ; )  = 12.097, ddo/aE’ = -3.7523, 
dd,/aE‘ = 0.7495 (au), where E ;  is Fermi energy with respect to the free ionic energy 
E,,[26]. In thepioneerworks[ll, 121 theparameterswereobtainedfrom theequilibrium 
condition at T = 0 K. 

A I Landa er a1 

3.2. Transition metal 

In the case of a transition metal we can observe the d resonant effect when the energy 
of 5-p electrons is equal to the centre of gravity of the d band. The non-local resonant 
MP is built up as a sum of the non-resonant contribution w,)(r), which is responsible for 
the weak s-p dispersion, and the resonant one Vres(r, E ) ,  which influences only the d 
part of the wavefunction [27,28]. In reciprocal space ~ ~~ 

Vo(k,  Q)  = U o ( k F ,  9) + vra(k ,  4 )  (3.6) 

where (ull(kF, 9) coincides with (3.2) in the Fermi sphere approximation and V,,,(k, q )  
reflects the s-d hybridization and influences only the d part of the wavefunction. In 
accordance with [23,28] we can write 

Here y(k)  is the hybridization matrix element. Taking into consideration [29,30] that, 
when k+ 0. y ( k )  - k2and yfallstozerooutside the first Brillouinzone,onecansuppose 
the following expression: 

where k o  = (631~/Q)”~ is the Brillouin zone radius, kd = (2Ed)”* characterizes the 
d-zone position, and E,, = 0.5k2. A, is the resonant MP amplitude connected with d 
bandwidth(A)[13.29]: 

A d  = A(nQ/5)“2. (3.9) 

We use the following expression [23] for density of the d states: 

__ ~ _ _  10 OSW, 
n, (E)  = - 

JT ( E  - E,)’ + (0.5U‘d)’ 
(3.10) 

to obtain the expression (3.7). Here Ed is the centre of gravity of the d band and W, is 
the d resonant width. If we integrate (3.10) from -cc to EF and equate the result to the 
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d electron valence Z,, the Friedel equation for the description of the d band position 
with respect to the Fermi level will be obtained: 

E, = EF + 0.5Wd/tan(0.1nZd). (3.11) 

In the present work the following parameters of the non-local resonant MP obtained 
in [13] are used: Z ,  = 1, R, = 2.2, a,(E,) = 16.0, a,(&) = 35.442, a,(&) = 35.442, 

0.034. Here W, and A are quoted from [30] and the expression (3.9) is used to obtain 
Ad. R,,, is chosen as half of the sum of atomic and ionic radii. Parameters a/ and d,enahle 
one to describe free-ion term values of Cu' (see [13]) and the equilibrium density of 
solid Ni at T = 0 K and reflect the equality of Helmholtz free energies of both phases at 
the melting point (Ni: T,  = 1726 K) with high accuracy. 

&(E,) = -35.235, dI(EF) = -52.459, d 2 ( E ~ )  -21.433, Zg = 9, Ad = 0.938, Wd = 

4. The calculation of the melting thermodynamic characteristics and the Kauzmann 
temperature: application to Ni 

At present widespread methods for the rapid solidification of metal alloys enable one to 
reach cooling rates from lo4 to lo7 K s - '  [l]. These are not enough to quench an 
amorphous phase in pure liquid metals. As shown in [31.32] quenching rates -10l2- 
1013 K s- l  are necessary to obtain a single-component metallic glass in Ag, Cu, Ni and 
MO. In [33] single-component metallic glasses (Ni and MO) were obtained. A new 
method for the explosive sprayingof the melt was used. The amorphous Ni crystallization 
temperature T, = 570 K close to the glass transition temperature (T,) was determined. 
In [34] the low limit for the glass transition temperature was estimated as the Kauzmann 
point (Na, Pb and Mg). The investigations mentioned above have stimulated the present 
calculations, which aimed to model the cooling of liquid Ni up to the glass transition 
temperature. 

Figure 1 shows the interatomic potential V(r) at the melting point in both pseudo- 
potential approximations mentioned above. The non-local potential is deeper and 
shifted towards the origin. This behaviour reflects the stronger interaction within the 
framework of the resonant MP and influences the current results. 

Table 1 lists the thermodynamic characteristics of Ni calculated a t  the melting point. 
Q,(,)is the atomicvolume insolid (liquid) Ni, AQ and ASare thevolume and theentropy 
of fusion, respectively, 17 is HS packing fraction, and Bo is the Debye temperature. The 
stronger interatomic interaction in the non-local approximation enables one to improve 
the results of the variational parameter calculation in comparison with the Animalu MP. 
The good agreement between the calculated values and the experiment is a necessary 
condition for satisfactory calculation of the glass transition temperature. 

Figure 2 gives the results of the Kauzmann temperature calculation for Ni. The 
calculation was performed on the basis of the following criterion [34,41]: When the 
temperature approaches Tg a configurational part of the entropy of the liquid vanishes, 
thus the entropy of the liquid (SI) decreases faster than that of the solid &). When the 
melt is frozen below a critical temperature (T,), SI < S, (Kauzmann paradox). T, is the 
characteristic temperature of Kauzmann theory and it corresponds to the low limit for 
T,in the limit of the low (critical) cooling rate. 

According to the present calculations there are TiA) = 1130 K and T!R) = 800 K. As 
mentioned above TyP = 570 K [33]. The resonant MP enables one to obtain the more 
realistic value of T,. As mentioned in [42] the glass transition associated with the 
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Figure 1. The interatomic potential of liquid Ni: 
(-)the resonant MP: (-- --) the Animalu MP. 

Figure 2. The calculation of Ni Kauzmann tem- 
perature: (-1 the resonant MP; (----) the 
Animalu hlP. 

Table I ,  The theoretical and experimental melting characteristics of Ni. 

Anima I u 88.62 84.05 -5.16 0.82 0.423 268 
Resonant 11.31 82.73 6.97 I .09 0,462 314 
Experiment 80.641351 83.23 [35] 3.211351 1.11 [371 0.450[39] 375[40] 

(and reference) 84.M[36] 4.191361 1.23[38] 

Kauzmann phenomenon cannot occur for substances of limited molecular weight with 
physically reasonable potentials. The real glass transition always occurs by Tg > T,. 

As mentioned in (341 the correct description of the glass transition temperature of 
alkali metals based on the Kauzmann criterion (T, = O.JT,,,) is possible only within the 
framework of the Weeks-Chandler-Andersen (WCA) model (liquid state) and the quasi- 
harmonic phonon model (solid state). Similar calculations performed in [34] within the 
HA MP and variational PY HS model led to too high results (T,  = O.57Tm). Analogously 
one can explain the too high present result (T,  = O.66Tm) obtained in the local Animalu 
pseudopotential approach. Taking into account the resonant peculiarities of the tran- 
sition metal within the framework of the non-local M P ,  one can more reliably describc 
the interatomic interaction and satisfactorily calculate thermodynamic characteristics. 
All these provide the lowest T, (T,  = 0.46Tm) even within the framework of the simple 
reference models under consideration. 
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5. The calculation of the thermodynamic properties of liquid NI-AI alloys 

The non-local pseudopotential method expounded above enables one to describe the 
bonding energy, bulk moduli and phonon spectra of solid metals and also compress- 
ibility, heat capacity, entropy and electrical resistivity of pure metallic melts [ll-131. In 
the present work we calculate the thermodynamic characteristics of liquid Ni-A1 alloys 
at a fixed temperature and within the whole concentration interval. 

The interpretation of the deviation from ideality is the main problem of solution 
theory. This deviation is characterized by such thermodynamic values as volume (AV), 
energy ( A E )  and excess entropy (ASE) of mixing. All these characteristics are important 
parameters of many phenomenological models of the glass transition. Many attempts 
based on different approaches were made in order to describe the deviation from the 
Zen law: 

(i) The association concept with finite lifetime has proved to be very useful in the 
theory of liquid alloys [43]. 

(ii) Taking into consideration the electron density rearrangement due to charge 
transfer in order to cancel the chemical potential difference, the atomic volume change 
of the alloy can be described [44]. 

The first approach is realized in many phenomenological models. Taking into con- 
sideration the charge transfer within the framework of an apriori model we can realize 
the second approach 

The charge transfer in Mn(Fe,Co,Ni)-AI alloys was investigated in [45] by use of 
soft x-ray spectroscopy. The experiments have shown that there was a filling of the d 
band of the transition metal after it  was alloyed with the polyvalent metal (AI). Moreover 
at a critical concentration of AI (c?) the d band was completely filled. Detailed photo- 
emission studies have already ascertained [46] that the density of states near the Fermi 
level (nd(EF)) in the equiatomic Ni-AI alloy is much lower than in pure Ni. Usually this 
critical concentration is found by diamagnetic transfer conditions when the d band is 
completely filled (46.471. In [48] the theoretical method of the definition of c: was 
elaborated. In the present calculation we have used c; = 0.55 [47]. 

In accordance with the existing d band filling mechanism [4649] there are two sets 
of equations to calculate 2, and 2,: 

(i) 0 c2 6 c; (d band is unfilled) 

Zd = 20, i (10 - Zo,)C,/Cz” (5.1) 

2, = z,c, + (2, - n,)c,. (5.2) 
Here ne is the number of valence electrons transferred into the d band; ne is found from 
the balance condition at c2 = cr  : 

nee; = (10 - ZO,)(1 - c ; ) .  (5.3) 

In the present calculations n, = 0.8132. Taking into consideration W, = 0 when the d 
band is completely filled [13] we have assumed a linear d resonant width decrease to 
zero within the same concentration range: 

Wd = Wj(1 - c&) (5.4) 
where W$ is the d resonant width of pure Ni. 
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(ii) c? 2 cT (d band is filled) 

Zd = 10 (5.5) 
w d = o  n,(&) = 0 (5.6) 
Ed = EF + lim [0.5Wd/tan(0.1nZd)]. (5.7) 

z, = (2, + 28 - 1O)Cl + z,c, 

r:-ct  

We have taken into account that the second term in (5.7) transforms to  O/O type when 
the d band is filled. The concentration point c; belongs to both intervals mentioned 
above. That is why we have used the limit transition in (5.7). 

In [20] to save computing time we have considered non-local effects only for Ni (in 
AI non-local effects are very small). Thus in this model the Ni depletion hole charge 
changed but the AI one became constant within the whole concentration interval. In 
order to avoid this discrepancy we have selected the resonant MP amplitude to describe 
the experimental value of the heat of mixing in the given system. 

In contrast to [20] the present calculations were performed within the framework 
of the whole non-local model without the use of any thermodynamic experimental 
information on Ni-AI alloys. We have used the depletion hole charge balance equation: 

CI (PNi - PRi) + c2(PAI - = 0 (5.8) 
where pNilAI) is the depletion hole charge for Ni (AI) in the alloy and p\icAl, is the same 
value in the pure metal. We have solved this equation with respect to the resonant MP 
amplitude. 

Calculatcd values of the s-p electron density (Z,/S2), depletion hole charges and the 
resonant MP amplitude are plotted in figure 3. With AI concentration increasing, the 
electron density increases too. I t  leads to the Ni depletion hole increasing in order to 
compensate the electron density growth. When Ni atoms are dissolved in Al. the AI 
depletion hole decreases. 

The calculated values of the equilibrium volume. and the energy and excess entropy 
of mixing are plotted in figure 4 (T= 1923 K). Experiment31 results were taken from 
[S, 9,501. The present calculations show z small deviation from the Zen law when 
c2 s 40 at.% and a large negative deviation within the rest of the concentration interval. 
The calculated mixing energy is several times as high (when AI is dominant in Ni-AI 
alloys) as the experimental one. The calculations performed in [6] (Animalu MP) do not 
enable one to describe the considerable negative excess entropy of liquid NI-AI alloys. 
The excess mixing entropy calculated in the non-local approach is in good agreement 
with the experimental data under consideration; moreover ASE 4 0 when c2 > 40 at.%. 
There are two reasons for this behaviour: first, the large volume compression, which 
leads to the negativepackingentropycontribution to ASE;secondly, d band filling leads 
tothe negativeelectronentropycontribution toASE[48]. Asmentionedin[41] theglass 
transition temperature attains a maximum at the same concentration point where ASE 
reaches a minimum. One can explain this coincidence on the basis of the Kauzmann 
criterion [34,41]. But the reduction of the entropy of liquid alloys, unlike a pure metal, 
is due not only to  the cooling but to the volume compression too. 

Calculated values of HS diameters and HS packing fraction are plotted in figure 5. 
Figure 6 shows the dynamic viscosity concentration dependence at T = 1923 K. The 
experimental viscosity results were published in [lo]. Taking into consideration the  
change in depletion hole charge mentioned above one can explain the observed HS 
diameter behaviour. Both the considerable Ni HS change within the concentration range 
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Figure 3. The mncentration dependence of: ( a )  
thes-pelectrondensity;(b) theNidepletion hole 
charge; (c) the A1 depletion hole charge; ( d )  the 
resonant MP amplitude. 

Figure 4. The concenfration dependence of: ( a )  
theequilibriumvolume; ( b )  theenergyofmixing; 
(c) the excess entropy of miring, T = 1923 K. 
Symbols: ( X )  the resonant MP; ( t )  the Animal" 
MP; (B) experiment 18.9. SO]. 

and the volume compression lead to a large positive HS packing fraction deviation from 
additivity. It showsupin theviscosityof liquid Ni-AI alloys, which wascalculated within 
the framework of the Enskog model (the working formulae are given in [7]). We are 
able to describe the viscosity peak within the framework of the non-local MP although it  
becomes wider and probably too high compared with the experimental one. Never- 
theless, we can take into account the principal possibility of such peak description within 
the framework of the atomic viscosity model without using the association mechanism. 
Taking into consideration viscosity and entropy extremum position near the equiatomic 
composition, we have chosen Ni,,AI, alloy to calculate the Kauzmann temperature. 
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Figure 5 .  The concentration dependence of ( a )  
the Ni HS diameter; (b)  the AI H s  diameler (the 
resonant MP);(c) the Hspackingfraction. Symbols 
in (c ) :  (+) the  resonant Mr; (m) the Animdlu MP. 

Figure 6. The dynamic viscosity concentration 
dependence of liquid Ni-AI alloys. T = 1923 K. 
Symbols: ( x )  the resonanl MP; (+) the Animalu 
MP; (D)expenment [ I O ] .  

6. The calculation of the Kauzmann temperature in Ni,,A?,, alloy 

As shown insection2, the Helmholtzfree energyof the disordered binarysolid solution 
can be calculated by means of inequality (2.1) wilh the Einstein oscillator system as the 
reference state. Ordering results in an additional contribution to the energy expression 
(ordering energy) and to  the account of the long-range order parameter in the entropy 
term. In [51] the pseudopotential method and thermodynamic perturbation theorywere 
used to investigate the ordering of Mg,Cd and MgCd, phases: moreover the long-range 
parameter (T) was determined by means of the variational approach. This approach has 
an essential deficiency: experimental information on the type of superstructure under 
investigation must be known. In [41] the Kauzmann criterion was used to investigate 
the liquid-glass transition in Ca-Mg and hlg-Zn systems and the ordering entropy 
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information was taken from experiment. At the same time it is interesting to  make an a 
priori determination of the energetically favourable superstructure arisen on the basis 
ofthegivenlatticeofthedisorderedsolidsolution. Thesolutionofthisproblem becomes 
possible due to the joint employment of both the pseudopotential method and the 
thermodynamic statistical theory of ordering [52-541. This approach was used in [55- 
571 to investigate the ordering effects in the Ni-AI system (Animalu local MP). It was 
found that the superstructures B2 (NiAI) and L12 (Ni,AI) based on BCC and FCC lattice, 
respectively, were the most favourable (our present non-local calculations give the same 
result) and the phase diagram in the two-phase region between NiAl and Ni3AI was 
plotted. 

In order to calculate the ordering contribution to the Helmholtz free energy of the 
binary solution it is necessary to know the Fourier transform of the ordering potential 
V(k,) .  Here k, is one of the wavevectors of the star which characterizes the stability of 
the given superstructure. For the superstructure B2 under consideration, k, F (1 11). 
As shown in [52-541 

where 

F$uh(q) = F d q )  + (WQq2)(zY - 2;)’ exp(-q2/4v). (6.2) 
Here F,,,(q) is the subtractive pseudopotential characteristic function, Zf(2) is the 
effective ion valence and vis  the Ewald parameter (see appendix). 

Knowing the ordering potential V(111) one can calculate the long-range order 
parameter for B2 superstructure by means of the equation 1521: 

( c ,  - 0.5r)(cZ - 0 . 5 ~ )  - V ( 1 l l ) ~  
( c ,  + O . ~ T ) ( C ,  + 0.5s) k B T  ’ 

In - 

The ordering energy for B2 phase can be written as follows [52]: 

fluord = &V(11l)s2 (6.4) 
and the configuration entropy must be written as follows [58]: 
Sord - - 

mnf - I k ~ [ ( c ,  + 0 . 5 ~ )  In(c, + 0 . 5 ~ )  + (c, - 0.5s) In(c, - 0.5) 

+ (cz + 0.5s) In(c, + 0 . 5 ~ )  + (c2 - 0 . 5 ~ )  In(c2 - 0 .5~) ] .  (6.5) 
In the present calculation of the Helmholtz free energy of the ordered solid solution 

we have the following scheme: In order to obtain pNi(AI) we have solved the pressure 
equation of state for pure components and thus using (5.8) and the common variational 
scheme the equilibrium volume of the disordered solid solution was found. This volume 
was used to calculate Flub(q) and ro, 2 $2)-to define Ewald parameter v (see appendix). 
Then using (6.1)-(6.5) one can calculate V( 11 l), T ,  AU and S;;$ 

In accordance with [57] within the framework of Animalu MP for B2 phase of Ni50A150 
alloy the following result is obtained: V (  11 1) = -0.0737 at T = 0 K, which corresponds 
to the order-disorder transition temperature T: = 5818 K calculated by the formula 
[52]: 

T !  = - c , c~V( l l l ) / kB .  (6.6) 
The above index ‘0’ means that the ordering potential is calculated at T = 0 K and is 
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Table 2. The ordering potential V ( l  11) (in auj temperature dependence in Ni,AI, alloy. -- ~ . ~ . " . . , ~  , ~. ~~ 

23oo 1900 1500 I loo 
, . "  .--.-.,..,, ,.,. *,.C. , , . , , , ,  , .. 

T(.W 

V(I  11) -0.0535 -0.0597 -0.0657 -0.0706 
~. - . . ,  

Figure 7. The temperature dependence of the 
lonerange order parameter in 82 phase Ni,,AIM 
(the resonant MP). Symbols: I.) without account 
of V(l  l l j  temperature dependence: (+) with 
account of V( I  1 I )  iemperaturc dependence. 

Figure 8. The caiculalion of Nis,Als, Kauzmann 
temperature (the resonant MPj. 

temperature-independent. The present calculations with the non-local hip give the 
following results: at T = 0 K and V(11 1) = -0.0839, r = 1 and T! = 6642 K. But the 
approach under consideration allows one toshow the reduction of the ordering potential 
with increasing temperature. This temperature dependence is reflected in table 2. Using 
equation (6.3) one can construct the temperalure dependence of the long-range order 
parameter r ( T )  with the account of the temperature dependence of V(111). The 
calculations are performed up to the order-disorder temperature (T,) and the results 
are plotted in figure 7. The results of the calculation with the non-local MP and without 
taking account of the V(111) temperature dependence are plotted too. The calculated 
critical temperature is T, = 3140 K ,  and is considerably smaller than T :  quoted above. 

Figure 8 gives the result of the Kauzmann temperature calculation for Ni,,AlSo alloy 
performed within the framework of the non-local MP. According to the calculations 
Tllh) 2 1830Kand Tkh) = 3100K. T,=0.59TmishigherthanthesamevalueofpureNi 
(T5 = 0.46Tm) but to0 IOW for RGF. 

7. Conclusions 

The use of twodifferent quantum-mechanical models of the interatomicinteraction (the 
pseudopotential method and the tight-binding approximation) and the thermodynamic 
variational methods is standard in work devoted to  research on the thermodynamic 
characteristics of binary metallic alloys. Most of them are dedicated to simple metal 
alloys where the use of the local MP is correct [14,15, SI, 591. However, in systems with 
a significant deviation from ideality, good agreement with experiment can be reached 
only by the use of the non-local pseudopotential. For an example one can look through 
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the works [41,60] where the first-principles orthogonalized plane-wave (OPW) pseudo- 
potential was used. In 1611 chemical short-range order (CSRO) investigations in the liquid 
and amorphous alloys of simple metals based on the OPW method and Yukawa charge 
hard-sphere (YHS) reference system were made. Use of both the tight-binding model 
and the Yukawa formalism was made in the works [62,63] to investigate CSRO in liquid 
and amorphous transition metal-transition metal (T-T) alloys. 

The present work is devoted to the transition metal-polyvalent metal (T-P) Ni-AI 
system. The use of the local MP [6,7] does not allow one to show the main distinguishing 
feature of this system-the large negative deviation from ideality. This problem can be 
solved only in terms of the complete non-local approach with resonant mechanism 
interaction. The correct account of the electron effects when a transition metal is 
alloyed with a polyvalent metal allows one to describe the peculiarities of the main 
thermodynamic and kinetic characteristics of T-P liquid alloys which are necessary to 
estimate the glass transition ability. It is very important to take into consideration both 
d band filling and depletion hole change around each component. One can describe 
rather well the strong negative deviation from ideality without use of the association 
mechanism. 

The Kauzmann temperature calculations for Ni and NijoAIjo were performed. It is 
shown that in the alloy under consideration the Kauzmann reduced temperature (T,/ 
T,) is higher than that in pure Ni but insufficient for RGF. 
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Appendix 

Aswasshownin [52] theelectrostaticcontribution totheorderedenergyofacompletely 
ordered alloy with two types of sites in pseudopotential theory can be represented as: 

In accordance with [52-541 the Ewald parameter Y in (AI) is chosen so that the con- 
tribution from direct space may be ignored. 

On the other hand A &  is the difference between the electrostatic energies of com- 
pletely ordered and completely disordered alloys. Therefore from the condition of the 
limit transition from the completely ordered state to the completely disordered one, 
within the framework of the statistical concentration-wave model 1521 the electrostatic 
contribution in the Fourier transform of the mixing potential V,(k,) can he written as: 

V d k J  = (2/c,c,)AE,. ( W  
But Ewald's sum in (Al)  depends only upon both the basic crystal and the ordered 

substructures. Therefore V&) may he expressed as 

V,,(k,)  = m h ( Z f  - Z;)* /r ,  643) 
where ah is the Madelung constant for the given superstructure 
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Let us show that in the case when all sublatiices of the ordered alloy are crys- 
tallographically equivalent (for instance, two sublattices in superstructure B2) a& may 
be expressed over Madelung constants of the basic lattice. 

Let the basic lattice contain n crystallographically equivalent sublattices, and in the 
completely ordered state k of them are occupied by atomsof type A and m by atoms of 
type B. From the equivalence of these sublattices one can obtain the following relation 
between Madelung constants [64]: 

and a,, = ffpq = ut* (i # j ; p  #q). (AJ) ( y , = o (  " 
,I ,I I1 

In  this case the electrostatic energy of the completely ordered alloy will be expressed in 
the following way: 

E,, = [1/(2nru)][kal,(Z:)' + n1ntt(z;)2 + k(k  - 1 ) n , 2 ( z r ) 2  
4- m(r71- I)n12(zy)* + 2a1,mkz:Z2*]. ('45) 

(A61 

After some easy algebra 

E,, = [l/(Zru)][nt,(cIZ: + c,Z$)? + (mk/ i i2 ) (nI l  - alf)(zf - Z;)']. 
Here a, is a 'full' Madelung constant of the basic lattice: 

CY" =el t  + ( n  - 1 ) ~ ~ : .  (A71 
I t  isobvious that the first term in (A6) isequal to the energyofcompletely disordered 

solid solution 1521 and hence the second term must be equal to AEcs (Al). Owing to this 
discussion one can immediately obtain 

C Y &  = ( a t t  - alz). (AS) 

-1.7918585); for the L12 structure cl,= -1.1088047, n t 2 =  -0.2276472 (a U - -  

For the B2 structure ell = -1.397007. nI2 = -0.394851 (et2 = nbCc = 
Llr  - 

&LCc 6 -1.79174723). 
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